The only way to accurately predict the conditions near black holes is with extensive computer simulations of the complicated physics involved. While black holes are the quintessential manifestation of Einstein's General Relativity, very few precision tests of the theory have been based on actual observations of black holes. New simulation results point to an... Read More
  In recent years a dozen small 'dwarf' galaxies that surround our Milky Way have been discovered. A KIPAC team shows how these tiny galaxies are great places to look for the signatures of dark matter and determine its properties. The most natural theories of dark matter posit it to be a particle that interacts weakly with ordinary matter, and surrounds the... Read More
Clusters of galaxies are the most massive structures in the universe. Most of the mass in these clusters is considered to be dark matter. The Fermi LAT monitors these clusters for a gamma-ray signal from dark matter annihilation. No such signal has been found yet, but the non-observation starts to constrain a wide range of proposed dark matter models. Clusters of... Read More
Huge natural thermonuclear explosions, so called stellar novae, are observed in binary systems consisting of a dense compact white dwarf circling a star. The Fermi LAT has for the first time ever detected gamma-ray emission from such an event. This observation indicates particle acceleration in the shock wave produced by the nova explosion to at least GeV energies.... Read More
It has long been suspected that the processes at the center of active galaxies prevent the gas from forming stars. Now, for the first time, a KIPAC team has seen that happening before our eyes. One of the seeming paradoxes of astrophysics is that stars form because something got colder.  Only cold gas can sink into a gravitational potential and coalesce to form a... Read More
Long (up to Megaparsec scale), highly collimated jets of magnetized plasma emanating from the active nuclei of galaxies pose many astrophysical puzzles - including the mechanism by which those outflows are accelerated to relativistic velocities, and the structure of the jet magnetic field. Recent high resolution X-ray imaging of the jet in famous radio galaxy Pictor... Read More
Centaurus A (Cen A) is one of the brightest radio sources in the sky: it is a giant elliptical Galaxy about 10 million light years away, making it the closest active galaxy we know. A remarkable feature of the radio image of this galaxy is that the bright central source is accompanied by a pair of giant radio "lobes," thought to be fuelled by relativistic jets... Read More
Among the many opportunities in the LSST project, it necessitates a new understanding of our own atmosphere. LSST science depends on photometric redshift determination, which in turn depends on accurate measurements of the flux from celestial objects. At wavelengths where our atmosphere glows, this presents a novel challenge. The LSST filter bands, showing total... Read More
Cosmic inflation may have imprinted a distinctive pattern, associated with so-called B-Modes, on the polarization pattern of the Cosmic Microwave Background radiation on degree angular scales. A team including several KIPAC researchers will be attempting to detect this key signal using the BICEP2 telescope over the next two years, following its "first light"... Read More
A team of astronomers, including two from KIPAC, have created a map of X-ray emission from around the central galaxy of a galaxy group. Along with data from other wavelengths, it dramatically shows the effects of outbursts from the central active galactic nucleus that occurred millions of years ago. Image of X-ray emission from around NGC 5813, with the galaxy... Read More